## CURRENT TRANSFER MECHANISM IN HETEROSTRUCTURES $nGe-p(Ge_2)_{1-x-y}(GaAs)_x(ZnSe)_y$

A.Y. Boboev, D.P. Abduraximov, M. Mamirov, M. Ismatullayeva, C. Mamadaliyev

Andijan State University, Andijan, Uzbekistan, 170100

Epitaxial layers  $(Ge_2)_{I-x-y}(GaAs)_x(ZnSe)_y$  grown on germanium substrates attract researchers as a new semiconductor material, and the structures derived from them are theoretical and practical interest for the micro - and optoelectronics.

We have studied the solid solutions  $(Ge_2)_{1-x-y}(GaAs)_x(ZnSe)_y$  grown by liquid phase epitaxy from a limited volume bismuth molten solution in an atmosphere of purified hydrogen palladium. The substrate was Ge washer with diameter 20 mm and thickness 350 microns, with the crystallographic orientation (111) n - type conductivity and with resistivity 1 ohm·cm. Epitaxial layers were p - type conductivity and thickness of the layers was 20 microns.

To study the structure of the semiconductor contacts were created by vacuum deposition of silver - solid on the back side and a rectangular with area of 8 mm<sup>2</sup> from the epitaxial layer.



Vol. 2 Issue 6

Fig.1. Current-voltage characteristics of  $nGe-p(Ge_2)_{I-x-y}(GaAs)_x(ZnSe)_y$  structures in the

To determine the mechanism of current transport were measured current-voltage characteristics (CVC) of these structures at different temperatures (fig.1.). One can see from fig.1 CVC forward at temperatures of 298 - 398 *K* consists of two distinctive sections. Initial exponential section of the CVC up to 1 V is well approximated by the well-known theory of V.I. Stafeev [1] and elaborated in [2] for p-i-n-structures:

18

$$I = I_o e^{\frac{qV}{ckT}} \tag{1}$$

where q- elementary charge, k - Boltzmann constant, V - the bias voltage, T is the absolute temperature. The value of "c" in the exponent can be directly calculated from the experimental points of the exponential section curves CVC using the relation

$$c = \frac{q}{kT} \cdot \frac{V_2 - V_1}{\ln \frac{I_2}{I_1}},$$
(2)

where in  $I_1$ ,  $I_2$  - current values of two voltages  $V_1$ ,  $V_2$ . Values "c" which calculated according to this formula, at different temperatures are shown in table 1. As it seen from table 1 the "c" decreases with increasing temperature from 298 K to 398 K.

| Т (К)      | 298        | 323        | 348       | 373       | 398      |
|------------|------------|------------|-----------|-----------|----------|
| I0 (A)     | 11.96.10-6 | 12.26.10-6 | 14.5.10-6 | 19.10-6   | 16.10-6  |
| С          | 17.75      | 15         | 12.53     | 12.8      | 10.23    |
| В          | 12.7       | 15.4       | 19.25     | 18.74     | 24.9     |
| ρ (Ohm·cm) | 46.35.106  | 49.47.106  | 45.63.106 | 46.27.106 | 47.106   |
| τ, s       | 1.1.10-8   | 1.08.10-8  | 1.05.10-8 | 9.9.10-9  | 8.5.10-9 |

| Table 1. Characteristic | parameters of the | solid solution | $(Ge_2)_{1-1}$ | <sub>x-y</sub> (GaA | .s) <sub>x</sub> (ZnSe | $)_{v}$ |
|-------------------------|-------------------|----------------|----------------|---------------------|------------------------|---------|
|-------------------------|-------------------|----------------|----------------|---------------------|------------------------|---------|

On the other hand, as it shown in [3] "c" given by the following expression:

$$c = \frac{2b + ch\left(\frac{d}{L_p}\right) + 1}{b + 1},\tag{3}$$

where *d* - thickness of the base, in our case d = 20 m,  $L_p$ -diffusion length of the major carriers - holes defined by the formula:

$$L_p = \sqrt{\frac{\varepsilon \varepsilon_0 kT}{q^2 p}} \tag{4}$$

where  $\varepsilon$  - dielectric constant determined from experimental data using the formula  $C = \varepsilon \varepsilon \partial S / d$ , where  $\varepsilon_0$  - dielectric constant, q and p - charge and majority carrier concentration:  $b = \mu_n/\mu_p$  ratio of electron and hole mobilities. Using d = 20, and b = 12,7, from (4) one can find the value of the diffusion length  $L_p$  of major carriers, which is equal to  $3,3\cdot10^{-6}$  m. Mobility major carriers - holes, determined by the method of Hall, was  $\mu_p = 378 \text{ cm}^2/\text{V}\cdot\text{s}$ , the value of the minority carriers (electrons) of the current defined from  $\mu_n = b \cdot \mu_p = 4800 \text{ cm}^2/\text{V}\cdot\text{s}$ . Then calculates the product of the mobility on the lifetime of the majority carriers ( $\mu_p \cdot \tau_p$ ) by the formula

19

Vol. 2 Issue 6

## INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE ON "MODERN EDUCATION: PROBLEMS AND SOLUTIONS"

$$\mu_p \tau_p = \frac{qL_p^2}{kT}.$$
(5)

At room temperature the product  $\mu_p \tau_p$  is ~ 4,16·10<sup>-6</sup> cm<sup>2</sup>/V; in turn, it is possible to determine the lifetime of the majority carriers ~  $\tau_p = 1,1 \cdot 10^{-8}$  s. Exponential factor  $I_0$  in the formula (1) has the form [1]:

$$I_{o} = \frac{kT}{q} \cdot \frac{S \cdot b \cdot ch(d/L_{p})}{2(b+1) \cdot L_{p} \cdot \rho \cdot tg(d/2L_{p})}$$
(6)

where  $\underline{S}$  - the sample area,  $\rho$  - resistivity layer between the Ge substrate and the solid solution  $(Ge_2)_{1-x-y}(GaAs)_x(ZnSe)_y$  (i.e, the p-n junction). Value  $I_0$ , determined from the experimental points of the curves CVC data table 1 and using equation (6) at room temperature was equal to  $12 \cdot 10^{-6}$  A. Also calculated resistivity  $\rho$  of transition layer of the substrate and the film, which was  $4,6 \cdot 10^7$  Ohm·cm at room temperature. It is shown in the table 1 that with increasing temperature resistivity layer between the substrate and the epitaxial film is almost unchanged.

## **REFERENCES**:

1. Stafeev V.I. Impact resistance of the semiconductor thickness on the current-voltage characteristic of the diode form . JTPh. Leningrad, 1958. Vol.8, p.1631-1641.

2. E.I.Adirovich, P.M.Karageorgy-Alkalaev, A.Yu.Leiderman. Double injection currents in semiconductors. (Moscow, Soviet Radio, 1978).

3 A.S.Saidov, M.S.Saidov, Sh.N.Usmonov, U.S.Asatova. Growing films  $(InSb)_{1-x}(Sn_2)_x$  on GaAs substrates by liquid phase epitaxy. Semiconductors. 2010. Vol.8. p.970-977.

