POLIMER CHIQINDILARINING TERMIK PARCHALANISH JARAYONINI KINETIK TAHLIL QILISH VA EKALOGIK AHAMIYATI

Authors

  • Ismoilov Mo‘minjon Yusupovich,Qurbonaliyev Komronbek Azamat o‘g‘li Farg‘ona davlat universiteti, k.f.d, professor,Farg‘ona davlat universiteti, tayanch doktarant

Keywords:

Kalit so‘zlar: polimer chiqindisi, termik parchalanish, kinetik tahlil, Arrenius tenglamasi, faollanish energiyasi, “Tar” mahsuloti, politsiklik aromatik gidrokarbonlar (PAH), TG-DTG, reaksiya mexanizmi.

Abstract

Xalqaro miqyosda polimer materiallar yillik ishlab chiqarilishi 400 million tonnani tashkil etib, bu moddalarning turli sohalardagi keng qamrovli foydalanishini namoyon etadi. Ammo bu rivojlanish bilan birga muhim muammolar paydo bo‘ldi, jumladan, yuksak darajadagi chiqindilar ombori va ularning atrof-muhitga ta’siri. Polimer zavodlari, ayniqsa gazdan polimer olish zavodlari, shu chiqindilarning eng katta manbalaridan biri hisoblanadi. Bu chiqindilar asosan “tar” mahsulotlar, ya’ni polimerlashtirish jarayonida reaksiyadan holi qolgan, bajaruvchi komponentlardan tashkil topgan kompleks qattiq moddalardir. Tar mahsulotlar asosan fenollar (45%) va politsiklik aromatik gidrokarbonlar (PAH, 31%) dan iborat bo‘lib, ular oson parchalanmaydigan va xavfligicha to'yingan birikmalar tarkibiga ega. Shunday qilib, tar mahsulotlaridan muhofaza qilish ekologik va iqtisodiy jihatdan muhim muammo hisoblanadi [8:1169].

References

1. Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, 57, 1126–1140.

2. Yoshioka, T., Gomi, A., Okuwaki, A., & Walter, P. E. (2004). Thermal degradation of polyethylene and polypropylene mixtures. Polymer degradation and stability, 83(3), 433–438.

3. Czernik, S., & Bridgewater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & fuels, 18(2), 590–598.

4. Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2022). Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems–A review. Chemical Engineering Journal, 444, 136067.

5. D’Allura, A. M., Pezzino, G., & Dattilo, S. (2018). Thermal degradation and kinetic analysis of polymer blends and composites. Polymers, 10(5), 565.

6. Williams, P. T. (2010). Pyrolysis of waste plastics and tyres: an overview. Waste Management, 30(11), 1957–1964.

7. Kyaw, A. K., Muto, A., Oshima, Y., & Nakagawa, T. (2017). Thermal degradation of poly(ethylene terephthalate) (PET) and polypropylene (PP) mixed plastic waste.

8. Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167–1180.

9. Wang, Z., Zhang, S., Li, Y., Zhao, Y., & Fu, J. (2020). Kinetic analysis of municipal solid waste pyrolysis using TGA coupled with Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa methods. Waste Management, 102, 333-342.

Downloads

Published

2025-10-24