GEOINFORMATION SYSTEMS IN THE ENERGY INDUSTRY

Authors

  • Tashkent University of Architecture and Civil Engineering (TUACE) Professor Tashpulatov Sarvar Anvarovich, intern-Cholonzor tuman 1-son politexnikumienergy specialist , (DSc) Kadirov Askar Anvarovich

Abstract

The article discusses the possibility and problems of using geographic information systems in the energy industry of the Republic of Uzbekistan in the context of legal regulation. As part of the study, the subject composition of legal relations in the field of GIS technology of industrial energy, integrated into a database of boron information, was examined. A legal analysis of the possibility of using geographic information systems at various stages of the life cycle of an energy installation, ranging from pre-design documentation to commissioning, was carried out. Information restricted for distribution has been determined. The legal security regime regarding information has been studied.

 

References

9. Doorga J., Rughooputh S., Boojhawon R. 2019 Multi-criteria GISbased modelling technique for identifying potential solar farm sites: a case study in Mauritius Renew. Energy. р.133, 1201–1219.

10. Sanchez-Lozano J., García-Cascales M., Lamata M., 2016 Comparative TOPSIS-ELECTRE TRI methods for optimal sites for photovoltaic solar farms. Case study in Spain. J. Clean. Prod. р.127, 387–398.

11. Castillo P., Batista C., Lavalle C. 2016 An assessment of the regional potential for solar power generation in UE-28 Energy Pol. р. 88, 86–99.

12. Нефедова Л. В., Соловьев А. А. Финансовые методы управления рисками при использовании ВИЭ // Энергетическая политика. 2020. № 5 (147). С. 62–75.

13. Нефедова Л.В., Соловьев А.А., Шилова Л.А., Соловьев Д.А. Факторы риска при сооружении энергообъектов на возобновляемых источниках энергии в России // Вестник МГСУ. 2016. № 12. С. 79–90.

14. Andenæs E., Jelle B., Ramlo K., Kolås T., Selj J., and Foss S. 2018 The influence of snow and ice coverage on the energy generation from photovoltaic solar cells Solar Energy. р. 159, 318–328.

15. Andrews R., Pollard A. and Pearce J. 2013 The effects of snowfall on solar photovoltaic performance Solar Energy. р. 92, 84–97.

16. Kolomiets Y., Tarasenko A., Tebuev V., Suleymanov M. 2018 Investigation of the influence of various pollution types on operational efficiency of solar power installations in Moscow Alternative Energy and Ecology (ISJAEE). р. 4–6, 12–24.

17. Kahl A., Dujardin J., Lehning 2019 The bright side of PV production in snow-covered mountains MPNAS. р. 116, 1162–1167.

18. База данных NASA SSE // [Электронный ресурс URL: https://power.larc.nasa.gov/data-access-viewer Проверено: 20.01.2021]

19. Официальный сайт ГК ХЕВЕЛ // [Электронный ресурс URL: https://www.hevelsolar.com Проверено: 20.01.2021]

20. НП Совет рынка. Перечень квалифицированных энергообъектов, функционирующих на основе ВИЭ// [Электронный ресурс URL: https://www.np-sr.ru/ru/market/vie/ind

21. Mauleón I. Assessing PV and wind roadmaps: Learning rates, risk, and social discounting. Renewable and Sustainable Energy Reviews 2018. vol.100. p. 71–89. 2. Marques-Perez I., Guaita-Pradas I., Gallego A. and Segura B. 2020 Territorial planning for photovoltaic power plants using an outranking approach and GIS J. Clean. Prod. p. 257, 120–602.

Downloads

Published

2024-12-30